A best constant for Zygmund’s conjugate function inequality
نویسندگان
چکیده
منابع مشابه
A Best Constant for Zygmund's Conjugate Function Inequality
When the space L log+L is given the Hardy-Littlewood norm the best constant in the corresponding version of Zygmund's conjugate function inequality is shown to be r2 3~2 + 5-2 7-2 + • ■ ■ K = I-2 + 3"2 + 5"2 + 7" This complements the recent result of Burgess Davis that the best constant in Kolmogorov's inequality is K"1. The symbol K will be used throughout for the constant p2 _ 3-2 + 5-2 _ 7-2...
متن کاملBest Constant in Sobolev Inequality
The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...
متن کاملFinding best possible constant for a polynomial inequality
Given a multi-variant polynomial inequality with a parameter, how to find the best possible value of this parameter that satisfies the inequality? For instance, find the greatest number k that satisfies a+b+c+k(ab+bc+ca)−(k+1)(ab+bc+ca) ≥ 0 for all nonnegative real numbers a, b, c. Analogues problems often appeared in studies of inequalities and were dealt with by various methods. In this paper...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولThe Best Constant in a Fractional Hardy Inequality
We prove an optimal Hardy inequality for the fractional Laplacian on the half-space. 1. Main result and discussion Let 0 < α < 2 and d = 1, 2, . . .. The purpose of this note is to prove the following Hardy-type inequality in the half-space D = {x = (x1, . . . , xd) ∈ R : xd > 0}. Theorem 1. For every u ∈ Cc(D), (1) 1 2 ∫
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1976
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1976-0402393-4